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Abstract  
 This paper concerns the 3-dimensional Lagrangian Navier-Stokes α model and the 

limiting Navier-Stokes system on smooth bounded domains with a class of vorticity-
slip boundary conditions and the Navier-slip boundary conditions. It establishes the 
spectrum properties and regularity estimates of the associated Stokes operators, the 
local well-posedness of the strong solution and global existence of weak solutions 
for initial boundary value problems for such systems. Furthermore, the vanishing α 
limit to a weak solution of the corresponding initial-boundary. 
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𝑢 − 𝛼∆𝑢 = 𝑣               →  (1.3) 

∇. 𝑢 = 0                        →  (1.4) 

INTRODUCTION 

The Lagragian Navier-Stokes α model (LNS-α) 
as a regularization system of the NavierStokes 
equations (NS) is given by 

 𝜕𝑡𝑣 − ∆𝑣 + 𝑇𝛼𝑣. ∇𝑣 + ∇ 𝑇𝛼𝑣 𝑇 ∙ 𝑣 = 0 

                                                         →  (1.1)                                   
                     ∇. 𝑢 = 0                    →  (1.2)                    
which describes large scale fluid motions in the 
turbulence theory, where𝑇𝛼𝑣 = 𝑢 is a filtered 
version of the velocity 𝑣 determined usually 

 bywith 𝛼 >  0 being a constant. This filter u is 
also called the averaged velocity. The system 
can be regarded as a system for this filter, and 
is also called the Lagrangian averaged Navier-
Stokes equations (LANS). The global well-
posedness for the LANS was first obtained in 
[1] for periodic boundary conditions. The 
convergence of its solutions to that of the NS 
equations and the continuity of attractors 
when 𝛼 →  0 are also considered there. 

 

when 𝛼 →  0 are also considered there. 

For bounded domains, the situation becomes 
more complicated since the LANS is a 4th 
odder system for the filter u, and only the no-
slip boundary condition 𝑢 =  0  on the 
boundary was considered by [2] under the 
assumption that 𝐴𝑢 =  −𝑃∆𝑢 =  0  on the 
boundary with P being the Leray projection 
operator. The boundary effects related to such 
a boundary condition were analyzed in [3].  

On the other hand, the LNS-α model 
emphasizes the system (1.1)-(1.4) as equations 
for the physical velocity v, which is a 
regularized system of the NS equations by 
filtering some part of the nonlinearity through 
a global quantity which is then called filtered 
velocity .It is also mentioned in [18] in the 
stochastic Lagrangian derivation of (1.1), (1.2) 
that any translation-invariant filter 𝑢 = 𝑇𝛼  𝑣 
may be adaptable.Although, there is no any 
serious difference between the two aspects for 
the equations (1.1), (1.2) filtered by (1.3), (1.4) 
in domains without boundary, the situation 
may be different for domains with boundaries. 
To our knowledge, very little is known to the 
LNS-α models in domains with boundaries 
from this point of view. 

In this paper, we investigate the initial 
boundary value problem for the LNS-α model 
(1.1), (1.2) in the following equivalent form 
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𝜕𝑡𝑣 − ∆𝑣 + 𝑇𝛼𝑣. ∇𝑣 + ∇ 𝑇𝛼𝑣 𝑇 ∙ 𝑣 = 0 

𝜑 = ∇ × 𝑣 + 𝑃𝐻𝐺
𝜑  

 ∇ × 𝑣 = 0 

(1.1), (1.2) in the following equivalent form 

                                                         →  (1.5)                                   
                     ∇. 𝑢 = 0                    →  (1.6) 

2.On 3D Lagrangian Navier − Stokes 𝜶 
Model with a class of Vorticity-Slip  
Boundary Conditions 

2.1 Theorem                         

         The stokes operator 𝐴𝐹 = −∆  with the 
domain  𝐷(𝐴𝐹) = 𝑊 ∩ 𝐹𝐻 is self-adjoint in the 
Hilbert space 𝐹𝐻. 

Proof: 

Given: 

        The stokes operator 𝐴𝐹 = −∆  with the 
domain  

 𝐷(𝐴𝐹) = 𝑊 ∩ 𝐹𝐻 

To prove: 

       Self-adjoint in the Hilbert space 𝐹𝐻.  

 It is clear that 𝐴𝐹 = −∆  with the 
domain  𝑊 ∩ 𝐹𝐻 is symmetric. 

  Since 𝐶𝑜
∞(Ω) ∩ 𝐻 is dense in 𝐻, 

 It follows that 𝐴𝐹  is densely defined 
due to the orthogonality of 𝐹𝐻 and 𝐻𝐻 and 
the compactness of  𝐻𝐻. 

Let 𝑢 ∈ 𝑊. Since 𝑛 ×  ∇ × 𝑢 = 0  on 
𝜕Ω, then                  −∇𝑢 = ∇ ×  ∇ × 𝑢 ∈ 𝐹𝐻. 

Thus 𝐴𝐹 maps 𝑊 ∩ 𝐹𝐻 to 𝐹𝐻.  

Now, for any  𝑓 ∈ 𝐹𝐻, it follows that 
there is a 𝜑 ∈ 𝐻1(Ω) satisfying 

                                    ∇ × 𝜑 = 𝑓   in Ω 

                                    ∇. 𝜑 = 0 in Ω 

                                   𝜑 × n = 0 on 𝜕Ω 

There is a 𝑣 ∈ 𝐹𝐻 ∩ 𝐻2 Ω  so that  

Here                        𝑃𝐻𝐺
𝜑

× 𝑛 = 0   on  𝜕Ω. 

It follws that       𝑛 ×  ∇ × 𝑣 = 0          on 𝜕Ω 

Then  ∇ ×  𝑃𝐻𝐺
𝜑

 = 0  and  𝜑 = ∇ × 𝑣 + 𝑃𝐻𝐺
𝜑   

 implies that           −∇v = 𝑓  in Ω 

Thus  

𝐴𝐹: 𝑊 ∩ 𝐹𝐻 → 𝐹𝐻  is surjective. If 𝑓 = 0, then 
integration by parts shows 

 ∇ × 𝑣 = 0 

 𝑣 2 ≤ 𝑐 ∇𝑣  

𝑎 𝑢, 𝜑 =  ∇ × 𝑢, ∇ × φ , D(a) 

𝑎 𝑢, 𝜑 =  ∇ × 𝑢, ∇ × φ , D(a) 

implies that           −∇v = 𝑓  in Ω 

Thus  

𝐴𝐹: 𝑊 ∩ 𝐹𝐻 → 𝐹𝐻  is surjective. If 𝑓 = 0,  then 
integration by parts shows 

It follows that u = 0 due to the orthogonality 
of 𝐹𝐻 and 𝐻𝐻 and  

Then     𝐴𝐹: 𝑊 ∩ 𝐹𝐻 → 𝐹𝐻   is one to one. 

Here  𝑊  and 𝐹𝐻  are closed in 𝐻2(Ω)  and 
𝐿2(Ω), and 

                                          ∆𝑣 ≤  𝑣 2 

We obtain from the Banach inverse operator 
theorem that 

        Hence the proof. 

2.2 Theorem                        

        The operator 𝐴𝐹 and the stokes operator 
𝐴𝐹 = −∆ with the domain  𝐷𝐴𝐹 = 𝑊 ∩ 𝐹𝐻 is 
self-adjoint in the Hilbert space 𝐹𝐻 is the self 
adjoint extension of the following bilinear 
form 

                      𝐷(𝑎)   =  𝑉𝐹 = 𝐹𝐻 ∩ 𝐻1 Ω   in 𝐹𝐻. 

Proof: 

Given:  

        The operator 𝐴𝐹 and the stokes operator 
𝐴𝐹 = −∆ with the domain  𝐷𝐴𝐹 = 𝑊 ∩ 𝐹𝐻 is 
self-ad joint in the Hilbert space 𝐹𝐻 is the self 
adjoint.  

To prove : 

The self adjoint extension of the 
following bilinear form 

                             𝐷 𝑎 = 𝑉𝐹 = 𝐹𝐻 ∩ 𝐻1(Ω) in 𝐹𝐻. 

𝑎 𝑢, 𝜑   with 𝐷(𝑎) = 𝐹𝐻 ∩ 𝐻1 Ω   is densely 
defined. 

𝑎 𝑢, 𝜑   is closed and positive. It follows that 
there is a self-adjoint operator 
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1 ≤ 1 + 𝜆1 ≤ 1 + 𝜆2 …… → ∞ 

𝐴𝛾𝑒𝑗 = (1 + 𝜆𝑗 )𝑒𝑗  

𝐴 with domain 𝐷(𝐴) ⊂ 𝐷(𝑎) Such that  

                          𝑎 𝑢, 𝜑 =  𝐴𝑢, 𝜑 , ∀𝜑 ∈ 𝐹𝐻 ∩ 
𝐻1 Ω   

For any 𝑢 ∈ 𝐷 𝐴 . It is clear that 

                            𝐷(𝐴𝐹) = 𝑊 ∩ 𝐹𝐻 ⊂ 𝐷(𝐴) 

And  𝐴𝑢 = −∆𝑢 for any  𝑢 ∈  𝑊 ∩ 𝐹𝐻. 

let 𝑢 ∈ 𝐷 𝐴  and 𝑓 = 𝐴𝑢. It follows from 
(Theorem 1) That there is a 𝑣 ∈ 𝐷(𝐴𝐹) such 
that 

                                      𝑎 𝑣, 𝜑 = (𝑓, 𝜑)      
∀ 𝜑 ∈ 𝑉𝐹 .  

On the other hand 

                        𝑎 𝑢, 𝜑 =  𝐴𝑢, 𝜑 =  𝑓, 𝜑   
     ∀ 𝜑 ∈ 𝑉𝐹 ,  

Hence     𝑎 𝑢 − 𝑣, 𝜑 =  ∇ ×  𝑢 − 𝑣 , ∇ × 𝜑 =

0∀ 𝜑 ∈ 𝑉𝐹 ,  

Taking 𝜑 = 𝑢 − 𝑣   shows that ∇ ×  𝑢 − 𝑣 = 0. 

                                         Thus  𝑢 = 𝑣 . 

Thus                   𝐷 𝐴 =  𝐷(𝐴𝐹) and 𝐴 = 𝐴𝐹. 

Denote by 𝑉𝐹
1 the dual of 𝑉𝐹 respect to the 𝐿2 

inner product.  

Then the notation of weak solutions can be 
extended for 𝑓 ∈ 𝑉𝐹

1 : 𝑢  is called a weak 
solution to 𝑓 ∈ 𝑉𝐹

1 if 

                                          𝑎 𝑢, 𝜑 =  𝑓, 𝜑 ,  
∀ 𝜑 ∈ 𝑉𝐹 

                              Hence the proof. 

2.3 Theorem 

         The self-adjoint extension of the bilinear 
form 𝑎 𝛾(𝑢, 𝜑)  with domain 𝐷 𝑎 𝛾 = 𝑉  is the 
stokes operator 𝐴𝛾 = 𝐼 + 𝑃(−∆)  with 

𝐷 𝐴𝛾 = 𝑊 𝛾 ∩ 𝐻,  and 𝐴𝛾  is an isomorphism 

between 𝐷 𝐴𝛾  and 𝐻 with a compact inverse 
on 𝐻.  Consequently,the eigenvalues of the 
stokes operator 𝐴𝛾  can be listed as 

With the corresponding eigenvectors 
 𝑒𝑗  ⊂ 𝑊 𝛾 , 𝑖. 𝑒., 

Which form a complete orthogonal basis in 
𝐻.Furthermore, it holds that 

                   (1 + 𝜆1)𝛾 ≤ 𝑎 𝛽 (𝑢, 𝑢) ≤
1

1+𝜆1
 𝐴𝛾𝑢 

2
,∀𝑢 ∈ 𝐷 𝐴𝛾    

1 ≤ 1 + 𝜆1 ≤ 1 + 𝜆2 …… → ∞ 

𝐴𝛾𝑒𝑗 = (1 + 𝜆𝑗 )𝑒𝑗  

 𝑢 1
2 ≤ 𝑐 𝑓 2 

 𝑣 2 ≤ 𝑐 ∇ × 𝑣 1 ≤ 𝑐 𝑢 1 

Which form a complete orthogonal basis in 
𝐻.Furthermore, it holds that 

                   (1 + 𝜆1)𝛾 ≤ 𝑎 𝛽 (𝑢, 𝑢) ≤
1

1+𝜆1
 𝐴𝛾𝑢 

2
,∀𝑢 ∈ 𝐷 𝐴𝛾    

Proof:      

Given: 

          The self-adjoint extension of the bilinear 
form 𝑎 𝛾 𝑢, 𝜑  with domain 𝐷 𝑎 𝛾 = 𝑉  is the 
stokes operator 𝐴𝛾 = 𝐼 + 𝑃 −∆  with 

𝐷 𝐴𝛾 = 𝑊 𝛾 ∩ 𝐻,  and 𝐴𝛾  is an isomorphism 

between 𝐷 𝐴𝛾  and 𝐻 with a compact inverse 
on 𝐻 

To prove: 

The eigenvalues of the stokes operator 𝐴𝛾  can 
be listed as 

With the corresponding eigenvectors 
 𝑒𝑗  ⊂ 𝑊 𝛾 , 𝑖. 𝑒., 

      Which form a complete orthogonal basis 
in 𝐻.Furthermore, it holds that 

                          (1 + 𝜆1) 𝑢 2 ≤ 𝑎 𝛽 (𝑢, 𝑢) ≤
1

1+𝜆1
 𝐴𝛾𝑢 

2
,∀𝑢 ∈ 𝐷 𝐴𝛾    

It suffices to show that 𝐷 𝐴𝛾 ⊂ 𝑊 𝛾 ∩ 𝐻  

Let 𝑢 ∈ 𝐷 𝐴𝛾 and 𝑓 = 𝐴𝛾𝑢. 

Since                     𝐷 𝐴𝛾 ⊂ 𝐷 𝑎 𝛽 = 𝐻1 Ω ∩

𝐻, 

It follows that 𝑎 𝛾 𝑢, 𝜑 =  𝑓, 𝜑 , ∀𝜑 in 𝑉 that 

Let 𝑛 𝑥 and  𝛾(𝑥)  be internal smooth 
extensions of the normal vector 𝑛 and 𝛾. 

Then   𝛾 𝑥 𝑢 + 𝐺𝐷 𝑢  × 𝑛 𝑥 = ∇ × 𝑣 + ∇ +

∇𝑔 

With             𝑣 ∈ 𝐻2 Ω ∩ 𝐹𝐻, 

               ∇ = 𝑃𝐻𝐺( 𝛾 𝑥 𝑢 + 𝐺𝐷 𝑢  × 𝑛 𝑥 ) 
and 

                ∇𝑔= 𝑃𝐺𝐺( 𝛾 𝑥 𝑢 + 𝐺𝐷 𝑢  × 𝑛 𝑥 ) 

One can get 

Here       𝑛 ×  ∇ = 0 and 𝑛 ×  ∇𝑔 = 0. 
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 𝑣 2 ≤ 𝑐 ∇ × 𝑣 1 ≤ 𝑐 𝑢 1 

  ∇ × 𝑣 .  ∇ × 𝜑 
 

Ω

+  

  
 𝛾𝑢 + 𝐺𝐷 𝑢  . 𝜑 =  −∆𝑣, 𝜑 , ∀𝜑 ∈ 𝑉

 

 

𝜕Ω
 

  ∆𝑣  ≤  𝑣 2     

  ∇ × 𝑣 .  ∇ × 𝜑 
 

Ω

+  

  

𝛾𝑢. 𝜑 +  𝐺𝐷 𝜑 . 𝑢 =  𝑓 − 𝑢, 𝜑 ,
 

𝜕Ω  

 

𝜕Ω
∀∈ 𝑉 

 𝐺𝐷 𝜑 . 𝑢 =
 

𝜕Ω
 𝐺𝐷 𝑢 . 𝜑

 

𝜕Ω
 

  ∇ × (𝑢 − 𝑣 ).  ∇ × 𝜑 
 

Ω
=  𝑃𝐹𝐻 𝑓 − 𝑢 + ∆𝑣 , 𝜑 , ∀𝜑 ∈ 𝑉 

 𝑃𝐹𝐻 𝑢 − 𝑣 2 ≤ 𝑐( 𝑓 +  𝑢 1) 

 𝑢 1
2 ≤ 𝑐 𝑓 2 

 𝑣 2 ≤ 𝑐 ∇ × 𝑣 1 ≤ 𝑐 𝑢 1 

 𝑃𝐹𝐻 𝑢 − 𝑣 2 ≤ 𝑐( 𝑓 +  𝑢 1) 

  𝑃𝐻𝐻 𝑢  2 ≤ 𝑐 𝑢  

 𝑢 2 ≤ 𝑐 𝑓   

 ∇ × 𝑢 × 𝑛 =  ∇ × 𝑃𝐹𝐻 𝑢  × 𝑛 =  ∇ × 𝑢 × 𝑛

= −𝛾𝑢 − 𝐺𝐷 𝑢  
                                              2(𝑆 𝑢 𝑛)⫟

= ( ∇ × 𝑢 × 𝑛 + 𝐺𝐷 𝑢 )⫟ 

       2 𝑆 𝑢 𝑛 ⫟ = −𝛾𝑢⫟ 

One can get 

Here       𝑛 ×  ∇ = 0 and 𝑛 ×  ∇𝑔 = 0. 

Thus  𝛾𝑢 + 𝐺𝐷 𝑢  . 𝜑 =  −∆𝑣, 𝜑 , ∀𝜑 ∈ 𝑉 

Then the definition of the weak solution 

Combine the equation 

Here ∇ × 𝑢 = ∇ × 𝑃𝐹𝐻(𝑢) and 𝑃𝐹 𝑢 ∈ 𝐻1 Ω ∩

𝐹𝐻. It follows that 

         a( 𝑃𝐹𝐻(𝑢 ) −𝑣, 𝜑) =  𝑃𝐹𝐻 𝑓 − 𝑢 +

∆𝑣 , 𝜑 , ∀𝜑 ∈ 𝐻1 Ω ∩ 𝐹𝐻 

since  𝑃𝐹𝐻 𝑓 − 𝑢 + ∆𝑣 ∈ 𝐹𝐻,  so 𝑃𝐹𝐻 𝑢 − 𝑣 ∈

𝑊,  

since   𝐻𝐻 is finite dimensional, 

so               𝑃𝐻𝐻 𝑢  2 ≤ 𝑐 𝑢  

It follows from the equation 

  Hence the proof. 

 

𝑣0 ∈ 𝐿2(0, 𝑇; 𝑉) ∩ 𝐶𝑤 ( 0, 𝑇 ; 𝐻) 

𝑑

𝑑𝑡
 𝑣0  2 + 2𝑎𝛽 𝑣0 , 𝑣0 ≤ 0 

𝑣0 ∈ 𝐿2(0, 𝑇; 𝑉) ∩ 𝐶𝑤 ( 0, 𝑇 ; 𝐻) 

                    (𝑣0)′ ∈ 𝐿
4
3(0, 𝑇; 𝑉 ′) 

3. Vanishing 𝜶 limit and the Navier Stokes  
equations  

3.1 Theorem 

            Let 𝑣0  ∈ 𝐻, and (𝑣𝛼 , 𝑢𝛼 ) be the global 
weak solution if 𝑣0  ∈ 𝐻, 𝛼 > 0,  then the 
solution 𝑣 obtained is global  

                           𝑇∗ = 𝑇∗ 𝑣0 = ∞  

corresponding to the parameter 𝛼 > 0. Then 
for any given 𝑇 > 0 there is a subsequence 𝑢𝛼𝑗  
of 𝑢𝛼  and 𝑎(𝑣0, 𝑢0) statisfying 

                        (𝑣0)′ ∈ 𝐿
4

3(0, 𝑇; 𝑉 ′)  

              𝑣𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝐻) weakly 

               𝑣𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝐷  𝐴
𝛽

−1

4  ) strongly 

               𝑢𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝑉𝛽 ) weakly 

               𝑢𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝐷  𝐴
𝛽

−1

4  ) strongly 

Moreover (𝑣0, 𝑢0)  is a weak solution of the 
intial boundary problem of the NS equations 
with 𝛼 = 0 and satisfies the energy inequality 

Proof: 

Given: 

                    Let 𝑣0  ∈ 𝐻,  and (𝑣𝛼 , 𝑢𝛼 )  be the 
global weak solution if 𝑣0  ∈ 𝐻, 𝛼 > 0, 

To prove: 

 then the solution 𝑣 obtained is global  

                                  𝑇∗ = 𝑇∗ 𝑣0 = ∞  

 corresponding to the parameter 𝛼 > 0.Then 
for any given 𝑇 > 0 there is a subsequence 𝑢𝛼𝑗  
of 𝑢𝛼  and 𝑎(𝑣0, 𝑢0) statisfying 

         A weak solution of the intial boundary 
problem of the NS equations with 𝛼 = 0 and 
satisfies the energy inequality 
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𝑑

𝑑𝑡
 𝑣0  2 + 2𝑎𝛽 𝑣0 , 𝑣0 ≤ 0 

𝑑

𝑑𝑡
  𝑢 2 +  𝛼𝛼𝛽 𝑢, 𝑢  

+ 2 𝑎𝛽 𝑢, 𝑢 + 𝛼 𝑃∆𝑢 2 = 0 

+𝑎𝑎𝛽 𝑢𝛼  , 𝑢𝛼  

+   𝑎𝛽 𝑢𝛼  , 𝑢𝛼 + 𝛼 𝑃∆𝑢𝛼 2 𝑑𝑡 ≤ 𝑐
𝑡

0

 

 𝐵 𝑣𝛼 , 𝑢𝛼 , 𝜑 =   ∇ × 𝑣𝛼 × 𝑢𝛼 𝜑𝑑𝑥 = 𝐼 + 𝐼𝐼
 

Ω
 

𝐼𝐼 =  𝑣𝛼 . (−𝑢𝛼 . ∇𝜑 −
 

Ω
𝜑. ∇𝑢𝛼 )𝑑𝑥 

  𝑣𝛼 𝑣𝛼 . ∇𝜑 𝑑𝑥
 

Ω
 

≤ 𝑐( 𝑢𝛼 +  𝛼 𝑃∆𝑢𝛼 ) 𝑢𝛼 𝐿3(Ω)
  ∇𝜑 𝐿6(Ω) 

 𝑢𝛼 𝐿3(Ω)
2 ≤ 𝑐 𝑢𝛼  𝑢𝛼 1

≤ 𝑐 𝑢𝛼 
3
2( 𝑢𝛼 +  𝑃∆𝑢𝛼 ) 

1
2 

 ∇𝜑 𝐿6(Ω) ≤ 𝑐 𝐴𝛽𝜑  

 𝑢𝛼   2 + 𝑎𝑎𝛽 𝑢𝛼  , 𝑢𝛼  

+   𝑎𝛽 𝑢𝛼  , 𝑢𝛼 + 𝛼 𝑃∆𝑢𝛼 2 𝑑𝑡 ≤ 𝑐
𝑡

0

 

Let 𝑣0  ∈ 𝐻, 𝑇 > 0, and (𝑣𝛼 , 𝑢𝛼 ) be the global 
weak solution corresponding to 1 ≥ 𝛼 > 0. It 
follows that 

For some constant 𝑐  independent of 𝛼.  For 
any 𝜑 ∈ 𝑊𝛽 ∩ 𝐻, we have 

Where       𝐼 =  (𝑛 ×
 

𝜕Ω 𝑣𝛼).  𝑣𝛼 × 𝜑 𝑑𝑆 

                                                    𝐼𝐼 =

 𝑣𝛼 . (−𝑢𝛼 . ∇𝜑 −
 

Ω 𝜑. ∇𝑢𝛼 )𝑑𝑥 

Since 𝑢. 𝑛 = 0  and 𝜑. 𝑛 = 0  on the boundary 
so 

                                   𝑢𝛼 × 𝜑 = 𝜆𝑛 on 𝜕Ω 

Hence                                 𝐼 = 0 

To estimate  

Here  

Then 

And  

 

  𝑣𝛼 𝑢𝛼 . ∇𝜑 𝑑𝑥
 

Ω
 

≤ 𝑐( 𝑎𝛽 𝑢𝛼  , 𝑢𝛼 
1
2 + 𝛼 𝑃∆𝑢𝛼 

+ 𝛼 𝑃∆𝑢𝛼 ) 
5
4  𝐴𝛽𝜑  

≤ 𝑐 ( 𝑢𝛼 +  𝛼 𝑃∆𝑢𝛼 ) 𝑢𝛼 1
  𝜑 𝐿∞(Ω) 

  𝑣𝛼 𝜑. ∇𝑢𝛼 𝑑𝑥
 

Ω
 

≤ 𝑐( 𝑎𝛽 𝑢𝛼  , 𝑢𝛼 
1
2 + 𝛼 𝑃∆𝑢𝛼 

+ 𝛼 𝑃∆𝑢𝛼 ) 
3
2  𝐴𝛽𝜑  

 𝑢𝛼   2 + 𝑎𝑎𝛽 𝑢𝛼  , 𝑢𝛼  

+   𝑎𝛽 𝑢𝛼  , 𝑢𝛼 + 𝛼 𝑃∆𝑢𝛼 2 𝑑𝑡 ≤ 𝑐
𝑡

0

 

 1 − 𝛼 𝑢𝑡
𝛼 + 𝛼𝐴𝛽 𝑢𝑡

𝛼 = 𝑣𝑡
𝛼  

 1 − 𝛼  𝐴𝛽
−1𝑢𝑡

𝛼 
2

+ 𝛼 𝐴𝛽
−1𝑢𝑡

𝛼 
2

=  𝐴𝛽
−1𝑢𝑡

𝛼 
2
 

 𝐴𝛽
−1𝑢𝑡

𝛼 
2

≤ 2 𝐴𝛽
−1𝑢𝑡

𝛼 
2
 

Next,        𝑣𝛼 𝜑. ∇𝑢𝛼 𝑑𝑥
 

Ω   

Which implies that  

Then for 𝛼 < 1,                𝐵 𝑣𝛼 , 𝑢𝛼 , 𝜑  ≤

𝑐(1 +(𝑎𝛽 𝑢𝛼  , 𝑢𝛼 
1

2+𝛼
3

4 𝑃∆𝑢𝛼  
3

2)  𝐴𝛽𝜑  

It follows from the equation 

And                        𝐵 𝑣𝛼 , 𝑢𝛼 , 𝜑  ≤

𝑐(1 +(𝑎𝛽 𝑢𝛼  , 𝑢𝛼 
1

2+𝛼
3

4 𝑃∆𝑢𝛼  
3

2)  𝐴𝛽𝜑  

 𝐵 𝑣𝛼 , 𝑢𝛼  and then 𝑑

𝑑𝑡
(𝑣𝛼)  are uniformly 

bounded in 𝐿3
4 (0, 𝑇; 𝐷 𝐴𝛽

−1 ).  

It follows that 

For 0 < 𝛼 ≤
1

2.
 This shows that 𝜕𝑡𝑢

𝛼  are 

uniformly bounded in𝐿
4

3 (0, 𝑇; 𝐷 𝐴𝛽
−1 ) as 𝜕𝑡𝑢

𝛼 . 

It implies that (𝑢𝛼  ) are uniformly bounded in 
𝐿2(0, 𝑇; 𝑉). 

 And the duality between 𝑉 = 𝐷(𝐴
𝛽

1

2 )  and 

𝐷(𝐴𝛽
−1) with respect to the inner product of 

𝐷(𝐴
𝛽

−1

4 ) 
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  𝐵 𝑣𝛼 , 𝑢𝛼 ) − 𝐵(𝑣0, 𝑣0 , 𝜑  ≤ 𝐼 + 𝐼𝐼 

𝐼𝐼 = 𝛼 (𝐵 𝑃∆𝑢𝛼 , 𝑢 𝛼 , 𝜑)  

 𝐵 𝑣𝛼 , 𝑢𝛼 , 𝜑 =   ∇ × 𝑣𝛼 × 𝑢𝛼 𝜑𝑑𝑥 = 𝐼 + 𝐼𝐼
 

Ω
 

  (𝑢 𝛼 − 𝑣0). (𝑢 𝛼 . ∇𝜑)
 

Ω
  

≤ 𝑐 𝑢 𝛼 − 𝑣0  𝑢𝛼 
1
2 𝑢𝛼 

𝐿6(Ω)

1
2  ∇𝜑 𝐿6(Ω) 

 𝑢 𝛼 − 𝑣0 2 

≤ 𝑐 𝑢 𝛼 − 𝑣0 
𝐷(𝐴

𝛽

−1
4 )

  𝑢 𝛼 − 𝑣0 
𝐷(𝐴

𝛽

1
4 )

 

 𝑢 𝛼 − 𝑣0 
𝐷(𝐴

𝛽

1
4 )

2 ≤ 𝑐 𝑢 𝛼 − 𝑣0  𝑢 𝛼 − 𝑣0 1 

  (𝑢 𝛼 − 𝑣0)
 

Ω
 .  𝑢 𝛼 . ∇𝜑  

≤   𝑢 𝛼 − 𝑣0 
𝐷(𝐴

𝛽

−1
4 )

1
2  𝑢 𝛼 − 𝑣0 

1

1
4 𝑢𝛼 

1

1
2 𝐴𝛽𝜑  

              𝐴
𝛽

−1

4 𝑢, 𝐴
𝛽

1

2 𝜑 =  𝐴
𝛽

1

2 𝑢, 𝐴𝛽
−1𝜑  

There exist a subsequence  

               𝑢𝛼𝑗  of 𝑢𝛼   and  𝑣0  such that 

                𝑢𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝑉) weakly 

                𝑢𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝐷  𝐴
𝛽

−1

4  )  strongly 

Here 

Where 

   𝐼 =   𝐵 𝑢 𝛼 − 𝑣0, 𝑢𝛼 ) + 𝐵(𝑣0, 𝑢𝛼 − 𝑣0 , 𝜑   

Similar to the equation 

And                       𝐼 = 0 

Integrating by part we get, 

  𝐵 𝑢 𝛼 − 𝑣0, 𝑢𝛼 , 𝜑    =   (𝑢 𝛼 −
 

Ω

𝑣0). (𝑢 𝛼 . ∇𝜑 + 𝜑. ∇𝑢 𝛼 )   

And 

This shows that 

  (𝑢 𝛼 − 𝑣0)
 

Ω
 .  𝑢 𝛼 . ∇𝜑  

≤   𝑢 𝛼 − 𝑣0 
𝐷 𝐴

𝛽

−1
4  

1
2 ( 𝑢𝛼 

1

3
4 +  𝑣0 

1

3
4 𝐴𝛽𝜑  

  (𝑣 0 − 𝑣0). (𝜑. ∇𝑢𝛼 )
 

Ω
 

≤  𝑢 𝛼 − 𝑣0  𝑢𝛼 1 𝜑 𝐿∞(Ω) 

  (𝑢 𝛼 − 𝑣0)
 

Ω
 .  𝑢 𝛼 . ∇𝜑  

≤   𝑢 𝛼 − 𝑣0 
𝐷 𝐴

𝛽

−1
4  

1
2 ( 𝑢𝛼 

1

5
4 +  𝑣0 

1

5
4 𝐴𝛽𝜑  

  𝐵 𝑣𝑜 − 𝑢𝛼 , 𝑣𝑜 , 𝜑  ≤  𝑐 𝑢 𝛼 − 𝑣0 
𝐷 𝐴

𝛽

−1
4  

1
2  

  𝐵 𝑢 𝛼 − 𝑣0, 𝑢𝛼 , 𝜑   

≤   𝑢 𝛼 − 𝑣0 
𝐷 𝐴

𝛽

−1
4  

1
2 (1 +  𝑢𝛼 

1

5
4 +  𝑣0 

1

5
4 𝐴𝛽𝜑  

𝐼 ≤   𝑢 𝛼 − 𝑣0 
𝐷 𝐴

𝛽

−1
4  

1
2 (1 +  𝑢𝛼 

1

5
4

+  𝑣0 
1

5
4 𝐴𝛽𝜑  

  𝐵 𝑃∆𝑢𝛼 , 𝑢 𝛼 , 𝜑   

=   (𝑃∆𝑢𝛼 ). (𝑢 𝛼 . ∇𝜑 + 𝜑. ∇𝑢 𝛼 )
 

Ω
  

  𝐵 𝑃∆𝑢𝛼 , 𝑢 𝛼 , 𝜑  ≤ 𝑐 𝑃∆𝑢𝛼  𝑢𝛼 1 𝐴𝛽𝜑  

𝐼𝐼 ≤ 𝑐𝛼
1
2(𝛼 𝑃∆𝑢𝛼 2 +  𝑢𝛼 1

2)  𝜑 2 

Hence 

It follows that 

Then 

                              (1 +  𝑢𝛼 
1

5

4 +  𝑣0 
1

5

4  𝐴𝛽𝜑  

Similarly,one can obtain 

It follows that 

Similarly, 

Then 

It follows that 
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 𝐵 𝑣𝛼 , 𝑢𝛼 , 𝜑 =   ∇ × 𝑣𝛼 × 𝑢𝛼 𝜑𝑑𝑥 = 𝐼 + 𝐼𝐼
 

Ω
 

𝐼 ≤   𝑢 𝛼 − 𝑣0 
𝐷 𝐴

𝛽

−1
4  

1
2 (1 +  𝑢𝛼 

1

5
4

+  𝑣0 
1

5
4 𝐴𝛽𝜑  

𝐼𝐼 ≤ 𝑐𝛼
1
2(𝛼 𝑃∆𝑢𝛼 2 +  𝑢𝛼 1

2)  𝜑 2 

  𝑣0 ′, 𝜑 + 𝑎𝛽 𝑣0, 𝜑 +   ∇ × 𝑣0 × 𝑣0, 𝜑 = 0 

𝑑

𝑑𝑡
  𝑢𝛼 2 + 𝛼𝛼𝛽 𝑢𝛼 , 𝑢𝛼  + 2𝑎𝛽 (𝑢𝛼 , 𝑢𝛼 ) ≤ 0 

𝑑

𝑑𝑡
 𝑣0 2 + 2𝑎𝛽(𝑣0 , 𝑣0 ) ≤ 0 

(𝑣𝛼  , 𝑣0 , 𝜑) =  (𝑢𝛼  − 𝑣0 , 𝜑) + 𝛼( 𝐴
𝛽

3
4𝑢𝛼  , 𝐴

𝛽

1
4𝜑 

−  𝑢𝛼  , 𝜑 ) 

It follows that the equation 

This equation becomes 

𝐵(𝑣𝛼𝑗 , 𝑢𝛼𝑗 ) → 𝐵(𝑣0 , 𝑣0 ) in 𝐿1(0, 𝑇; 𝐷(𝐴𝛽
−1))  

strongly 

To show that 𝑣0 satisfies 

∀ 𝜑 ∈ 𝐶∞(Ω) ∩ 𝑉 in the sense  of distribution 
on  0, 𝑇 . 

Here  𝑣0 ∈ 𝐿2(0, 𝑇; 𝑉)  implies  𝑣0 ′ ∈

𝐿
4

3(0, 𝑇; 𝑉 ′) 

Thus ∀𝜑 ∈ 𝑉. 

Passing  to the limit and nothing the weak 
lower semi-continuity  of the norm, one  gets  

Here 

For 𝜑 ∈  𝐷  𝐴
𝛽

−1

4  .Then 

                  𝑣 𝛼 − 𝑣0 
𝐷(𝐴

𝛽

−1
4 )

2 ≤  𝑣 𝛼 −

𝑣0 
𝐷(𝐴

𝛽

−1
4 )

2 +c𝛼
1

2(𝛼 𝑃∆𝑢𝛼 2 +  𝑢 𝛼 1
2 

It follows that  

                                𝑣𝛼𝑗  → 𝑣0  in  𝐿1(0, 𝑇; 𝐷  𝐴
𝛽

−1

4  ) 

strongly 

 

(𝑣𝛼  − 𝑣0 , 𝜑) = (𝑢𝛼  , 𝑣0 , 𝜑) − 𝛼(𝑃∆𝑢𝛼 , 𝜑) 

 𝑢𝛼   2 + 𝑎𝑎𝛽 𝑢𝛼  , 𝑢𝛼  

+   𝑎𝛽 𝑢𝛼  , 𝑢𝛼 + 𝛼 𝑃∆𝑢𝛼 2 𝑑𝑡 ≤ 𝑐
𝑡

0

 

Here 

It follows from the equation 

And 

𝑢𝛼𝑗 → 𝑣0 in 𝐿2(0, 𝑇; 𝑉) weakly and we get 

             𝑣𝛼𝑗  → 𝑣0  in  𝐿1(0, 𝑇; 𝐻) weakly 

      Hence the proof. 

CONCLUSION 

Throughout this paper we discussed some 
definition and theorems on 3𝐷  lagrangian 
Navier-stokes  𝛼 model with a class of vorticity 
–slip boundary condition. And then we 
discussed  a vanishing   𝛼  limit and  the  
Navier stokes equation . The vanishing  𝛼  limit 
to a weak solution of the corresponding 
initial-boundary value problem of the Navier-
Stokes system is proved and a rate of 
convergence is shown for the strong solution. 
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